Type and Row Equality

نویسنده

  • J. C. Mitchell
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Row-Wise Backward Stable Elimination Methods for the Equality Constrained Least Squares Problem

It is well known that the solution of the equality constrained least squares (LSE) problem minBx=d ‖b−Ax‖2 is the limit of the solution of the unconstrained weighted least squares problem min x ∥∥ [ μd b ] − [ μB A ] x ∥∥ 2 as the weight μ tends to infinity, assuming that [B A ] has full rank. We derive a method for the LSE problem by applying Householder QR factorization with column pivoting t...

متن کامل

First-class labels for extensible rows

This paper describes a type system for extensible records and variants with first-class labels; labels are polymorphic and can be passed as arguments. This increases the expressiveness of conventional record calculi significantly, and we show how we can encode intersection types, closed-world overloading, type case, label selective calculi, and first-class messages. We formally motivate the nee...

متن کامل

A 1 a 2 a 3 a 3 a 2 a 1 * * * * a 1 a 2 a 3 a 3 a 2 a 1

Figure 12: Example of interactions between equality constraints in a horizontal window. the window. The rst row of Figure 12 gives the values of n. The second row shows the equality constraints due to the symmetry of the corner and to the periodicity. The third row, nally, gives the equality constraints due to the symmetry of the image corner. It is clear form the second row that, for example, ...

متن کامل

Ridit Score Type Quasi-Symmetry and Decomposition of Symmetry for Square Contingency Tables with Ordered Categories

Abstract: For square contingency tables with the same row and column ordinal classifications, this paper proposes the quasi-symmetry model based on the marginal ridits. The model indicates that the log-odds that an observation will fall in the (i, j) cell instead of in the (j, i) cell, i < j, is proportional to the difference between the average ridit score of row and column marginal distributi...

متن کامل

On Quasi-Symmetry Based on Ridit for Analysis of Square Contingency Tables

For square contingency tables with the same row and column ordinal classifications, we propose a model of quasi-symmetry using the row and column marginal ridits scores. Using the proposed model, the model of equality of marginal mean ridits and the model of equality of marginal variance ridits, we give a theorem such that the symmetry model holds if and only if all these models hold. Moreover,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996